ON b -VERTEX AND b -EDGE CRITICAL GRAPHS
نویسندگان
چکیده
A b-coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b-chromatic number b(G) of a graph G is the largest integer k such that G admits a b-coloring with k colors. A simple graph G is called b-vertex (edge) critical if the removal of any vertex (edge) of G increases its b-chromatic number. In this note, we explain some properties in b-vertex (edge) critical graphs, and we conclude with two open problems.
منابع مشابه
On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs
Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...
متن کاملVertex Equitable Labeling of Double Alternate Snake Graphs
Let G be a graph with p vertices and q edges and A = {0, 1, 2, . . . , [q/2]}. A vertex labeling f : V (G) → A induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv. For a ∈ A, let vf (a) be the number of vertices v with f(v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the indu...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملA Note on Tensor Product of Graphs
Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.
متن کاملDistance-based topological indices of tensor product of graphs
Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...
متن کامل